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This paper is concerned with a new conservative finite difference method for solv-
ing the generalized nonlinear Soldifiger (GNLS) equatioiu, + Uy + f (Juj?)u =
0. The numerical scheme is constructed through the semidiscretization and an ap-
plication of the quartic spline approximation. Central difference and extrapolation
formulae are used for approximating the Neumann boundary conditions introduced.
Both continuous and discrete energy conservation and the stability property are inves-
tigated. The numerical method provides an efficient and reliable way for computing
long-time solitary solutions given by the GNLS equation. Numerical examples are
given to demonstrate our conclusionsg 2001 Academic Press
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1. INTRODUCTION

There has been a high level of interest in computations of nonlinear waves, pulses,
beams. This is particularly the case for solitary waves, including the study of single solit:
waves and collision of several solitary waves. &dimger type equations have been fun-

damental in modeling the physical processes.

In this paper, we study a highly efficient method of computations for the generaliz

nonlinear Schodinger equation (GNLS),

2

.du 04U
Iﬁ_i_ﬁ_’_ f(|u|2)u:0, —0 < X<oo,t>1, (1.1)
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together with the initial condition
uX,to) = ¢(X) +iy(x), —oo <X < o0, 1.2)

wherei = /—1, and f (s) is sufficiently smooth withf (0) = 0. Functionsp (x) andy (x)
are real valued and are sufficiently smooth in the domain considered. The most freque
used functiond includef(s) = s, f(s) =1— €75, f(s) = s/(1+ s),andf(s) = In(1 +

s), r > 0 [1-3, 6, 7]. Equation (1.1) arises from plasma physics and quantum theory
reduces to the nonlinear Sdiulinger equation (NLS) aé(s) = s[5, 17].

The nonlinear term in (1.1) helps prevent dispersion of the wave. It balances the force
dispersion and nonlinearity in solutions. These balanced solutions include different ki
of interesting solitary waves including the single solitary wave and collision of two or mo
solitons [15].

It is observed that, when the nonlinear term in (1.1) is canceled, we obtain the lin
version of the Scladinger equation (LS):

Cou 92

|¥+8X2:0, —0 <X <oo,t >t (1.3)

The above equation provides a useful governing law for the propagation of dispers
waves. In fact, for given initial profile exjnx), the Fourier solutions of (1.2u(x,t) =
expli (nx — w(N)t)], w(n) = n?, demonstrate clearly the relation with the wave number
It can be further shown that the solution of (1.3) has an amplitude which decay¢ {jke 1
ast, x — oo with x/t = cfixed [1, 17].

Thex-free version of the GNLS,

i% + f(uPHu=0, t>to,
is also frequently considered inthe investigation. This nonlinear equation possessesage
solutionu(t) = cexp(ic|c|?t) whenf (S) = as, which is particularly importantin the study
of instabilities with respect to long-wave perturbations [11, 15].

It has been shown that Eq. (1.1) in general possesses an infinite set of conservation
[10, 11]. The conservation in time of the energy can be expressed through-timm,

lull2 = ,// UGG DRdx=c¢, t> t, (1.4)

or the weightedC,-norm,

ullz, = \// yOlux, H2dx=c, t> 1o, 1.5

where y (x) is positive andc is a constant. Condition (1.4), or (1.5), provides 25
boundness of the solution and plays a crucial part in the dynamics of the solitary w:
models. The initially unstable Fourier modes of the wave draw energy from the sta
modes, but because of conservation, the process must come to an end, and, in fact
possible for the energy to return to its initial distribution among the modes. This is refer
to as the so-called Fermi—Pasta—Ulam recurrence [1, 10, 17].
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Various kinds of numerical methods can be found nowadays for simulating solutions
NLS and GNLS problems (for instance, cf. [5, 8, 10-12, 15] and references therein). Mt
effort has been devoted to developing algorithms which conserve the energy of the wave
actly when time advances. Among the most popular and efficient finite difference schen
are five classical algorithms using semidiscretization, moving grid adaptation, and Cral
Nicolson type approximations [4, 5, 10, 16] and those based on pseudospectral consic
tions [9]. In [5], several important different schemes are tested, analyzed, and compare

During the recent development in spline collocated computations and higher order
proximations, in 1996, quartic spline collocations are introduced and studied for comput
solutions of partial differential equations with singularities [14, 18, 19]. In this paper, w
will extend the existing concept and propose a special quartic spline approximation to
place conventional finite differences in approximating the spatial derivative. Properties
the discrete conservation law and weak-conservation law of the numerical scheme wil
investigated under th&-norms, which is consistent with the origindb-norms used for
continuous problems. Numerical examples will be given.

2. SEMIDISCRETIZATIONS VIA QUARTIC SPLINE

Under the assumption that lim| — ooju] = 0,ty <t < T, for the purpose of compu-
tation, we may consider as an approximation to the original GNLS problem (1.1), (1.2) 1
initial boundary value problem

au 9%

%?+Eg+fmﬁw=0,a§x5nm<t51 (2.1)
UX,to) = d(X) +i(x), a<x=<bh, (2.2)
ou au

where|a| and|b| are sufficiently large.
We further express the solution of (2.1)—(2.3) as

ux,t) = p(x,t) +iq(x,t), a<x<b,t=>t,

where p andq are real functions. Let = (p, )". Under the new notation, the problem
(2.1)—(2.3) can be written as

0 92

8—:+A8—)(Z+g(v)=o, a<x<bt<t<T, (2.4)
v(X, to) = (P(X), ¥y(x)T, a<x<b, (2.5)
ov Jav
S @0=200=0 t<t=T (2.6)

where

(0 1 _ 2
A= (_1 O) and g(v) = f(jv|°)Av.

Given thatN > 1 andh = (b —a)/(N — 1) < 1, we define the spatial mesh regi@n=
{Xj :xe=a,x; =xj_1+h, j=2,3,..., N, Xy = b} over the intervalg, b]. The spatial
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derivative in (2.4) can then be approximated via the derivative of a quartic spline funct
S =S(X,1):

v 3%s ’ :
3 +Aﬁ+g(v)=0(h ), X=X,]=12,....,Njp<t <T. 2.7)

Removing the local truncation error term, we obtain

dt +Am,-|—g(w,)_ j=12,...,N,tg <t <T, (2.8)
wherew; = w(Xj, t) are approximations af(x;, t), andm; = s,x(xj, 1), Xj € Q.
For a given function (x), we denote

(331)]' =v1_1—2v]- + Vj+1, j =12, ...,N.

According to the Numerov condition, we have the spline collocation relation

mj_1+10rnj+mj+1= (SXwJ—i-eJ, j =12, ...,N. (2.9)

12,
ﬁ(sx i h2

It can be shown that the local truncation ereprassociated with the above approximation
is given by

4

h
e] = _27401))(6(51- . t),

whereé; is inside a neighborhood ofj. The above indicates that it is a fourth-order
approximation to the second derivative [19]. It follows immediately from (2.8), (2.9) tha

1o\dw 1, 1, .
(1+12 >dt + 5 ASfw| <1+ 82)gwj) =0, j=1.2....N, to<t<T.

(2.10)

Based on different approximation strategies for the Neumann boundary conditions,
introduce the following methods.

Method 1. By means of the central difference approximation to (2.6), we obtain tf
relations

w(X —h,t) = wx, t) + O(h?), wxn +h, 1) = wxn-1,t) + O(h?),
wi(Xg — h, 1) = wy (X2, 1) + O(h?), wi(xn 4 h, t) = wy(xn_1, 1) + O(h?),

wheretyg <t < T.

Let | € R?*? be the identity matrix and € R?N*2N be the block-diagonal matrix
diagiA, A, ..., A}. By denotingg; = (¢;. ¥))T, wj = (pj.q))", andoj = f(p? +q?),
j=12,...,N,wherep; = ¢ (X)), ¥j = ¥ (X)), pj = P(Xj),andq; = q(xj),X; € 2, we
may further define dimensionN2vectorsfy = (g1, 02, ..., On) " andw = (wy, wo, .. .,
wy)T. Adopting Method 1 for approximating the boundary values, from (2.5), (2.10) w
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obtain the second-order nonlinear scheme for approximating the initial boundary va
problem (2.1)—(2.3),

p(l)d_w

12
(1) (1) —
m+(ﬁBQ_H’R®w_QI>b (2.11)

w(to) = 90, (2.12)

where for the block-tridiagonal matricé%?, Q®, andR(w), we have

Py =Puh =5, P3=Ply =1

Pj(,]i) =10l pJ(j]) 1= P](lJ)Jrl_ I, j=2,3,...,N—=1,
8 = Qi = -0 = ~Q 1 =1,

Q(l) =2l Qﬁ L= QﬁH: I, j=23,...,N-1,

Rij=ojl, j=12,...,N.

We note thatP® is symmetric, positive definite, and nonsingular.

Method 2. By means of Richardson’s extrapolation for approximating (2.6), we have

4 2 2
wm.hU——ﬁMm0+lM&U+ﬁM&U+me

2 2 4
w(Xn +h,t) = 11 w(XN 2, ) + ﬁw(XN 1, t) - —]_w(XN,t) + 0(h%),

4 2 2 .
wi(Xy —h,t) = __wt(xlv t) + wt(Xz, t) + wt(Xg,t) + O(h"),
2 2 4 .
wi(Xn + h,t) = wt(XN 2, 1) + 1wt(XN 1, — iwt(XN, t) + O(h™),

wheretg <t < T.
Using the above for eliminating unknowns locate@at— h, t) and(xy + h, t) in (2.10),

we derive from (2.10) the following system:
/ ! / 12
106w; + 13w} + 2wy + P A(—26w; + 13w, + 2w3)
+ (=400 + 1101) Aw; + (200 + 1107) Aws + 209 Awsz = 0,
12
w]_l + lOw/j + wjﬂ + FA(wj,l —2wj + wj41)
+O'j_1ij + 100']' ij + (Ij+1ij+1 =0, ] =23...,N—-1,
/ ) ;12
ZwN_2 + 13wN_1 + 10611)N + FA(ZwN_Z + 13wn_1 — 26wy)
+2on+1Awn_2 + (Llon_1 + 20n41) Awn-1 + (110N — dont1) Awn = 0.
Note that quantities of;, X; € Q, are extremely small as; are close enough to the left

or right boundary according to our earlier assumption. We may therefore replat¢he
first equation byri, o2, o3 in turn, andoy 1 in the last equation byy_2, on_1, oy in turn.
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It follows immediately that the system can be conveniently written into a matrix form

p@ dw

12
e (WBQ(Z) + P(2>RB>w =0, t>t, (2.13)

w(to) = 90, (2.14)

where the block-tridiagonal matric&? andQ® are defined through

P = Py =106, P =P\_1=13, PR3 =Py ,=2l,
P2 =10, PP, =P@ =1, j=23...N-1

Pl=Qun=-26l, Q% =Q¢\.1=13, Q3 =Q¢\ =
Q¥ =-21, Q¥ ,=Q%,,=1. j=23....N-1

ThereforeP@ is nonsingular and positive. The scheme (2.13), (2.14) is of fourth ord
ignoring the trivial replacements near the boundary.

3. CONSERVATION LAWS

An analog of (1.4), (1.5) in the finite domain problem (2.1)—(2.3) can be established :

b
IIUI|5=\// lux,Dl2dx=c, t>to, (3.1)
a

b
lullz, = \// y(X)ux,t)2dx=c, t>to. (3.2)

In view that strict conservation laws may be difficult to follow in actual computations, fc
given 0< ¢ « 1, we may introduce the following pair of weaker conservation condition:

llulz —cl = e(t —to), t>to, (3.3)
[lullz, —cl < et —t), t>to. (3.4)

Problems satisfying (3.3) or (3.4) are considered as weakly conservative.
Given thatu, v € R?N, we define the inner product

2N
(u, v) =uTv=Zujvj.
j=1

It follows that, foru = u(t) € RN, to <t < T, a discretized version of (3.1), (3.2) and
(3.3), (3.4) can be defined as

fullz=+{u,u)=c, to<t=<T, (3.5)
[ullzr =v(Tu,u) =¢, to<t=T, (3.6)
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and
llulz—cl <et—1), to<t=<T, (3.7)
lullor —cl <€t —t), o<t =T, (3.8)

respectively, wher& e R?N*2N is nonsingular and positive.
THEOREM1. The semidiscretized problef®.11), (2.12) is conservative.

Proof. Letw be the solution of (2.11), (2.12). According to the symmetric property o
P®, and the skew symmetric property Af we have

<(P(1))_lBQ(1)w, w) =0.

Similarly, we find that

ol 0 A
0 ool 0 A
(R(w)Bw, w) = w' x w
0 onal O A
0 ol A

However, we observe that

1d 5 dw 12 1y —1 1
Sqplvlz = <E’ w> = 5 ((PP) 7" BQYw, w) + (RBw,w) =0, th<t<T.
Thus the semidiscretized problem is conservativm.

We note that discrete conservative laws using different norms can be found frequentl
many publications. A well-known example is given in [11], where

1 N-1 1
lul = | sufus+>_ufuj + Sulun. to<t<T.
j=2

However, many such norms, including this one, are not consistent with the original
norms used for the continuous problem. Thus the numerical schemes developed may n
conservative under thig-norm we used. For instance, the semidiscretized scheme deriv
in [11] can be written as

u' =[S+ TW]u,
where

—2A  2A
A -2A A

2A  -2A
T = diaQXO']_A, 02A, ..., oNA),
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andu = (U, Uy, ..., Un)T, uj € R?. By means of the skew symmetric propertyAfwe
arrive at

1 1
uj A, — UL Aun_1

(Su u) + (Tu, “>=_ﬁ 2

1 1
= —Q(Pl% —01p2) — ﬁ(quN—l —OnpPn-1) #0

in general. Thus the scheme is not conservative according to (3.5).

THEOREMZ2. Let|a|, |b| be sufficiently large. Then the solution of the probl@ni3),
(2.14) is weakly conservative in the sensd|of|, pw.

Proof. Itis observed that
pP@ = p® L |5’ Q(Z) — Q(l) + 67 (3.9)
in which for the block perturbation matricés Q,

Pi1=Pnn=101, Piy=Pyn1=12I, Piz=Pyn2=2l,
Qu1=0nn=-25, Qi2=0Qnn1=12I, Qr3=Qnn2=2l,

and the rest of5i,j = Qi,,- are null matrices. Let be the solution of the problem (2.13),
(2.14). Since that is sufficiently smooth and the numerical scheme is at least of first ord
accuracy, for giver, we have

mkax{l Pk — Pril, [0k — Oks1l} < c1h,

mkaxl PkOk+1 — Ok Pr+1| < Cze,

wherec;, ¢; > 0 are constants. The above imply that

212 a2 2 2
low — k-1l < &|Pf+ 0 — Py — Oe_a| < Csh.

However, for sufficiently largéal, |b|, based on (2.3) we may assume that

[wilo<e, j=1,23N-2N-1N. (3.10)
[P103 — 01 Psl, |PNON-2 — On Pn-2| < €. (3.11)
Note that
(BQWw, w) =0,
N-1
<P(1) R Buw, w> =w' PYPRBw = Z(Uk — 0k+1) (Ok Prs1 — PxOk+1)
k=1

due to the skew symmetric property Af It follows therefore that

|(PYRBw, w)| < cc3(N — Dhe = cye.
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Substituting (3.9) into (2.13) and multiplying both sides of the equatiow bye readily
obtain

1d dw
Ea”w”%pm = <P(1)E7 w>
12 ~ 12 . -~
:<_<hZBQ<1>+P<1>RB)w—Pw/—(hZBQ+ PRB>w,w>
) 5., 12 5.5
=—<P RBw,w>—(Pw,w)— —BQ+PRB|w,w). (3.12)
It can be shown that

(Pw', w) = (w})T (101w + 12wz + 2ws) + (wy) " Rwn_2 + 12wy_1 4+ 101wy),
(Béw, w) =12 (u)-lr Aw;, + w1,\-‘ AwN,l) +2 (u)-lr Awsz + w1,\-‘ AwN,z)
= 12[(p102 — g1 p2) + (PNON-1 — AN PN-1)] + 2[(P103 — d1P3)
+ (PNON-2 — ON PN-2)]
(F~’ R Bw, w> = 1202wI Aws + 203wI Aws + 2(7N_2w[l Awn_> + 120N_1wL Awn_1
= 1202(P102 — th P2) + 203(P10s — G1P3)
+ 20n_2(PNON-2 — ON PN—2) + 120n_1(PNON-1 — ON PN-1)-

Recall (3.10)—(3.12). From the above we obtain immediately that

d
a(”w”%pm) = Ce,

wherec > 0 is a constant. Therefore (2.13), (2.14) is weakly conservatime.

4. TIME INTEGRATION AND LINEAR STABILITY
The formal solution of (2.11), (2.12), or (2.13), (2.14), can be expressed as

12t — to)

w(t) = E( 2

(p(e))—lBQ(a)@O

t [— f—
- / E(# PlBQ“>> Rw()Bw(r)dr, to<t<T,£=12,
to

respectively, wheree (« M) = exp(a M) is the matrix exponential operator involved. A

direct calculation via the above, however, can be difficult. Instead, based on Method 1
Method 2, we consider the two adaptive difference schemes

PO (wk+d — 80 4 Tk(:]_fBQ(o 4 p(f)R(%(w(k-&-l) n w(k))) B)

1
. (2(w<k+l> +w<k>)) —0, k=01, (=12 (4.1)

w® = 6y, (4.2)
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wherew® is an approximation tes(ty), and the adjustable time step size0rg = ty 1 —
tk <1, k=0,1,2,...[13]. Both algorithms are of second order in time.

THEOREM 3. The implicit schemé4.1), (4.2)is conservative wheh = 1 and weakly
conservative in the sense [pf ||, po Wwhent = 2.

Proof. Let¢ = 1. Similar to the proof of Theorem 1, we may observe that
<(P(1))_1BQ(1) (w*HD 4w ®), (WD 4 y®)) = 0,

1
<R<2(w<k+1> n w<k>)> B(w®D 4 w®), (kD 4 w(k))> -0

Recall (4.1). We find immediately from the above that

(D = ), (w2 4 09) = [ ] =0

Therefore the scheme is conservative. However{ fer2, according to properties (3.10),
(3.11), we have

<B(§(w(k+1> + w(k>), (w"‘“) + w(k>)> < G,
<|:”> R(% (w<k+1> + w<k>)> B(w(k+l) + w(k)), (w<k+1> + w(k>)> < Cpe.
Further,
(PP (w® = w ), (w® 4w ) = [[w®][} o — 0P| b
(P, u) — (Bt u®) = ] po — [0 o + s
wherec;, ¢,, andcz are positive constants. It therefore follows that
[P i < [[w®]]3 per + ce.

and this indicates the weak conservation lam

THEOREM 4. The adaptive schemé4.1), (4.2)are unconditionally stable in the von
Neumann sense.

Proof. Noting the factthata|, |b| can be arbitrarily large, and recalling (2.10), we study
the systems derived from (4.1),

1oV, wn Tk a2/ kD) | (K
(1+ ]28x>(wj —w; )+WA8X(w]- + w; )

1 1
+rk(1+1—Za§>g(§(w§k+1>+w§">)> =0, j=12,...,N,k=0,1,... (4.3

whereg(w) = f(p? + g2 Aw. Following conventional linearization process, we assum
that

gw) ~ f(&)Aw.
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Replacingg by the above in (4.3), we obtain subsequently the following linearized syster
of equations:

1 (+) 0 1, 1,
(1+128>(u) wi’) + = {h2A5 +f(s)A(1+125)}

% (w (k+l)+ <k>)=0’ j=1,2...,N,k=0,1,.... (4.4)

Letw{ = exp(iyhj)M¥¢ be the test function, where € R, ¢ € R?, andM e R?*2
being the amplifying matrix. Substituting the test functioninto (4.4), we immediately obta

(@ + BAM — (al — BA) =0

where
ah
7(5+cosyh) ,3_<C05yh 1+f($))

Recall the skew symmetric property Af It is easy to see that the mateixt + A is non-
singular and shares the same set of eigenvajues, i, o — gi}, withal — BA. Thus the
maximal module of the eigenvalues i is one. Hence the linearized scheme is nondissi
pative and the schemes (4.1), (4.2) are stabie.

Let

12 - 1
FO = hz(p(é)) 'BQ® 4 R(z(w(k”)-|-w(k))>8.

Then (4.1), (4.2) can be written in the embedded form

<| +T2ka“>)w<k+l>= (| - 2F“>) 0 k=01,2...,6=12 (45)

w® = 6y, (4.6)

which can be solved through employing a proper iterative method.

5. NUMERICAL TESTS

We consider numerical solutions of two standard NLS/GNLS model problems via t
guartic spline associated scheme developed. The solutions give two different solitary wa
For simplicity, we let the step sizey, = 7, k=0,1,2, ..., be uniform. Both methods
developed work well in the computation and solutions are satisfactory. For the same tes
problem, it is also observed that there is no significant difference between the numer
results given by Method 1 and those by Method 2. Therefore, for simplicity in discussiol
we only present results obtained using Method 1 in the first numerical experiment, wt
presenting those given by Method 2 in the second experiment.
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TABLE |
The Energy Conservation of Numerical Solution of (5.1), (5.2)

n & llunll2 n 13 llunll2 n b llunll2
1 0.25 2.82842742 180 45.0 2.82842795 330 82.5 2.8284278
10 25 2.82842742 200 50.0 2.82842826 340 85.0 2.8284278
30 7.5 2.82842742 220 55.0 2.82842821 350 87.5 2.8284279
80 20.0 2.82842787 240 60.0 2.82842805 360 90.0 2.8284278
100 25.0 2.82842798 260 65.0 2.82842816 370 92.5 2.8284279
120 30.0 2.82842794 280 70.0 2.82842875 380 95.0 2.8284280
140 35.0 2.82842803 300 75.0 2.82842848 390 97.5 2.8284278
160 375 2.82842797 320 80.0 2.82842801 400 100.0 2.828427¢

(i) Single soliton case. The cubic Schwdinger equation is also a basic GNLS equation
We consider the initial value problem

. 9%u
u+—+|u|u—0 —00 < X <00, >0, (5.1)
8 ax2
20 iyx
u(x, 0) = ﬁexp <5 sechy/ax), —oo < X < 00, (5.2)

wherea ==y = 1.

In our numerical calculation, boundary condition (2.3) is introduced with —30 and
b = 70. We choose relatively large step sites 0.50, 7 = 0.25. According to the exact
solution of the problem (5.1), (5.2), we haje|, ~ 2.8284270t > 0. Letn denote the
time level indext, = nt be the corresponding time, ang be the numerical solution at
the time level,. In Table |, we list the energy profile of the numerical solutigrobtained
via Method 1. There is no significant improvement found in the numerical solution for tt
particular example when Method 2 is used.

It is observed that the total energy of the numerical solution is preserved very w
during the computation, though small disturbances start to appear at time level 80. Tt
disturbances are possibly due to the rounding errors in the process and are insignifi
compared to the total energy in thenorm. The solution is plotted in Figs. 1-3. Figure 1
shows the real parp,, of u,. Figure 2 shows the imaginary pagt, of u,. In Fig. 3, we plot
the modules ofi, at each grid point. In Fig. 4, we show detailpgwhen 0< t < 10 onthe
p-t plane as well as on the-t plane for the solitary wave locations. Iterations are used i
solving the nonlinear equations involved. It is found that the numerical gardy) — up||2
increases linearly and reaches i@t t;00. There is no visible change in the computed
solitary wave pattern except that the wave shifts slightly to the right when time increas
This may indicate an accumulated round-off error and suggest further improvements of
programming and controls.

(i) Collision of two solitons case.We consider interacting solitons for the cubic
Schiodinger equation (5.1) with the initial condition

20

u(x, 0) = ﬂ{exp( > )seck(fx)

+ exp(@)sech\/&(x —y3))|, —co<x<o0, (5.3)
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FIG. 1. The computed functiop,(x, t) for problem (5.1), (5.2).
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FIG. 2. The computed functiog,(x, t) for problem (5.1), (5.2).
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t
omputed function, (x, t) = 4/ p2(X, t) + g2(x, t) for problem (5.1), (5.2).

wherea = 0.5,8 = y1 = 1, > = 0.1, and the initial location of the slower solitary wave is
y3 = 25. We choosa = —20,b = 80 and leth = 0.5 andtr = 0.25 as in [11]. It is known
that the total energy igu(t)|. ~ 4.75682829061Q, > 0, whereu is the exact solution of
(5.1), (5.3). In Table I, we give the energy profile of the numerical solutipgiven by
Method 2.

Again, we observe that the approximation of total energy of the numerical solution
acceptable, and the energy conservation is well preserved. Iterations are used in the pr
for nonlinear equations and the average number of iterations is 2. We also note that, sir
to the previous case, the computing error increases almost linearly and reaches about
in 200 time steps ihy-norm due to the effect that the computed solution slowly shift:

TABLE Il
The Energy Conservation of Numerical Solution of (5.1), (5.3)

t lunll2 n t lunll2 n t lunll2
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FIG. 4. Projections of the solitary functiop, in the first stage as & t < 10. (Above) Projection on the-t

plane. (Below) Projection on the-t plane. The case faf, is similar. Problem (5.1), (5.2) is considered.

to the right. This is possibly because of the accumulated round-off error or programm

controlling error.

In Figs. 5 and 6, we plot the real part and imaginary part of the solution, respective

2, is plotted in Fig. 7. Finally, we show contour mapspaf

Pi+d
andgq, in Fig. 8. It is interesting to see that the solitary waves calculated agree well wi

predictions and studies in earlier investigations [1, 8, 10, 11, 17].

The energy functio

Thus we conclude that the conservative schedules are applicable and the comput:
procedures developed are reliable and accurate. The numerical methods may poss
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X t

FIG. 6. The computed functiog,(x, t) for problem (5.1), (5.3).
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X t

FIG. 8. Projections of the solitary functionp,(x, t) (left) and g, (right) on thex-t plane (0O<t < 50,
—20 < x < 80). Problem (5.1), (5.3) is considered.
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strong potential for application and extension to solving more general and more diffic
problems.
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